Precision Plastic Mold Steel with Ultra Mirror-finish

SMATE J TP4MHH

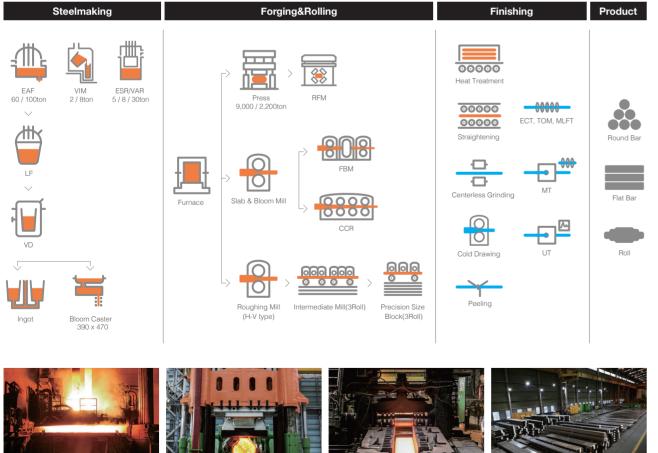
High-quality Plastic Injection Mold Steel

SěAH Changwon Integrated Special Steel

- 01 Company Instruction
- 02 History, Manufacturing Process
- 03 SMAT E
- 05 Overview
- 06 Machinability
- 07 Polishability
- 08 Electrical Discharge Machining, Etching
- 09 Welding
- 10 Nitriding, Physical Properties
- 11 TP4MHH
- 13 Overview
- 14 Mechanical Properties, Microstructure
- 15 Machinability

A NEW CHAPTER TO THE FUTURE

Changwon Plant, the base camp for SeAH CSS to be a leader in global steel manufacturing


SeAH CSS is a leading South Korean special steel manufacturer. It produces cutting-edge materials for use by such industries as construction, consumer electronics, power generation, machinery, and shipbuilding. Its Changwon Plant, which occupies an area of 641,000 square meters, boasts an annualized output of 1.2 million tons of steelmaking. It is also the only company in South Korea that produces stainless steel round bars and wire rods through an integrated production system for high-grade special steel. The company leads South Korea's steel market in a number of product categories, including stainless steel, tool steels, and special alloys. In particular, as the nation's only steel industry player to have a fullyintegrated production system for seamless pipes, it recently began operating a plant specializing in the manufacture of largediameter products.

History

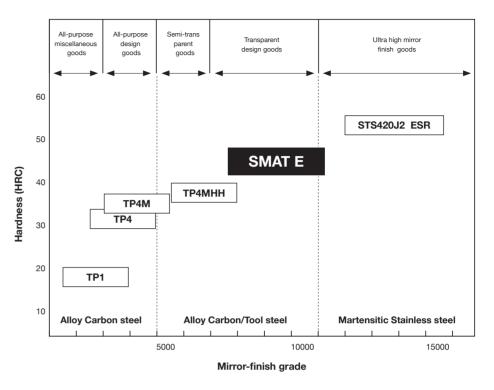
1966 Founded as Samyang Special Steel Co., Ltd.	1975 Changed its name to Korea General Special Steel Co., Ltd	1976 Opened its Central Research Lab
1977 Opened a special steel production plant in Changwon (for round bars, pipes and plates)	1980 Recognized for its annual export of USD 100 Mil	1982 Changed its name to SAMMI General Special Steel Co., Ltd
1991 Opened its second special steel plant (for steelmaking, rolling and processing)	1997 Annexed to POSCO group (for round bars and pipe business)	2006 Completed the 1st phase of its facility rationalization (AOD, HV Mill, Second acid cleaning plant and more)
2007 Changed its name to POSCO Specialty Steel Co., Ltd	2012 Completed the 2nd phase of its facility rationalization	2015 Acquired by SeAH Group and changed its name to SeAH Changwon Integrated Special

Steel Co., Ltd

Manufacturing Process

Rolling

(60ton EAF, Bloom Caster, SBM and more)


Steelmaking

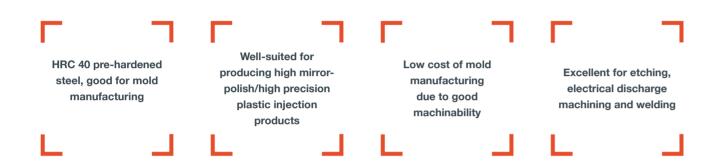
Product

SeAH's Mold steel by Advanced Technologies

Overview

factory, it can be used directly without any heat treatments.

Application


- Transparent lens
- Injection mold with sophisticated cavity
- Having elegant surfaces like Cr plating vacuum cleaners)

Actual Performance **Example**

Application	
Auto parts	SMAT E h machined of volume It can be nonmetal
TV parts	Less tool particular SMAT E h appropria
Faucets	SMAT E h mirror fini uniformly
	nonr Less parti SMA appr SMA mirro

SMAT E

Precision plastic mold steel with ultra mirror-finish

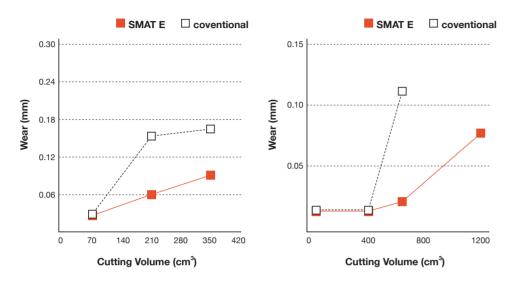
- SMAT E, mold steel for plastic injection molding, is electro slag remelting to minimize nonmetallic inclusions, ensure HRC 40 hardness, and feature excellent polishability.
- Optimal design of alloy and advanced heat treatment techniques give uniform physical properties along the surface and center of the material. Also, as SMAT E is already QT heat treated in our

- With high mirror-finish, high-quality surfaces, suitable for texturing and photo-etching

- ex) automobile lamps, TV bezels, transparent containers for refrigerators, cosmetic bottles, faucets, high-gloss consumer electronics goods(washing machines, air conditioners, rice cookers,

Actual performance

- has an excellent machinability with less tool wear and good d surface. And the production cost is decreased in machining a lot e per unit time because it can be machined at high cutting velocity. applicable for auto parts required high mirror-finish due to less allic inclusions, easily lapping.
- wear during precise rib machining and better surface obtained. In r, it has superior gun drill machinability to other materials imported. has excellent polishability with a high gross surface, so it is ate as a material for ultra mirror-finish TV front bezels.
- has excellent machinability for end mill/drill, and very high quality of nish, over #8,000. When plated with chromium, the plated surface is polished with a high-quality finish.


Machinability

End mill

When machining SMAT E and conventional steel, for a given volume under the same conditions, the depth of tool wear in SMAT E was much lower. And the surface quality in SMAT E after machining was much superior to conventional steels.

HSS drill, Tool diameter 16Φ

WC drill, Tool diameter 16Φ

Tool life : HSS 0.3mm, WC 0.15mm / Machining condition : recommended by the tool manufacturer

Machinability

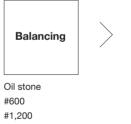
Gun drill

Machining condition : Wet penetrati

Ф30		Φ	18	Φ10		Φ5	
Spindle Speed RPM	Feed Rate mm/min						
389	30	800	40	1,400	50	3,000	40

Unit : Number of holes machined until tool life

Туре	Max No. of Holes						
	Ф30	Φ18	Φ10	Φ5			
SMAT E	9	6	6	27			
coventional	0	1	1	1			


Drill machining

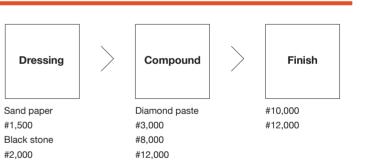
The table below shows how many holes were machined by tools with HSS/WC materials and several diameters up to tool life. SMAT E was machined more holes than conventional steel.

Ту	pe	Max No. of Holes					
Tool Material	Grade	1Φ	3Φ	5Φ	7Φ	10Ф	
HSS	SMAT E	0	12	16	75	174	
	coventional	0	3	47	18	116	
	SMAT E	580	492	385	133	90	
wc	coventional	510	510	283	150	81	

(Unit : No. of holes)

Lapping

Surface reflection, post-polishing process

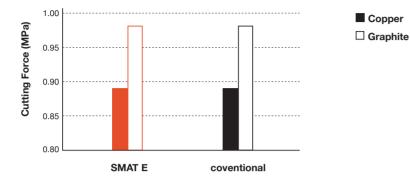

Tool life: HSS 0.3mm, WC 0.15mm

Unit: Number of holes that can be machined up to tool life

Like drill, the table below shows how many holes were machined by tools with HSS/WC materials and several diameters up to tool life. It shows that SMAT E has an excellent gun drill machinability for making holes 10Φ and smaller, using for coolant holes.

ion	work
	WUIN

(Unit : rpm, mm/min)



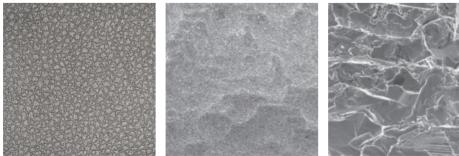
SMAT E has the level of mirror finish #8,000~ #12,000. No defects like pit and orange peel can be found, after lapping #12,000.

* You should completely remove the remelted layer during lapping. If not, any defects like pit and orange peel can occur.

Electrical Discharge Machining SMAT E is easy to EDM due to uniform microstructure, good cleanliness. At the same conditions, the surface roughness of SMAT E is similar to conventional steel's. It is highly easy to lap, because the remelted layer(white layer) is much thinner. * EDM : Electrical Discharge Machining

Surface roughness

Tool name : AGIETRON EXACT3 / Liquid dielectric : K-501 / Electrode : Copper, Graphite Target Ra : 0.8µm

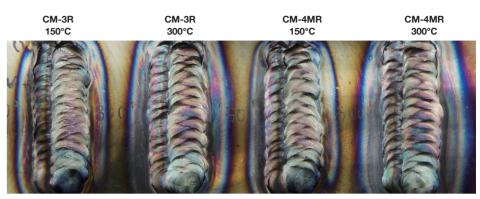

Machining condition

		Cop	oper			Graphite		
	STEP1	STEP2	STEP3	STEP4	STEP1	STEP2	STEP3	STEP4
Τ [μs]	37	27	24	21	27	21	15	12
Ρ [μs]	21	15	13	18	10	12	8.7	5.6
Ι [μs]	4.4	3.2	2.4	1.8	4.4	3.2	2.4	1.8
U [μs]	180	180	180	180	100	100	100	100
Ra	2.51	1.78	1.26	0.89	2	1.41	1.12	0.89
Vw [mm³/min]	7.0	3.0	1.0	0.5	6.5	2.5	1.0	0.5

Photo-etching

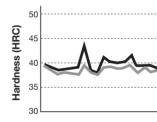
SMAT E has excellent photo-etching property. Especially, you can get an uniform surface quality without any defects after photo-etching. The reason is due to reduction in non-metallic inclusions and segregation by ESR process.

Used for car's In-pannel for brand H / Target etching depth : 140μ m



Magnified by 50X

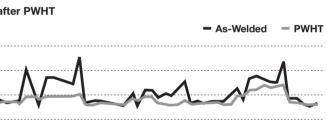
Magnified by 2,000X


Welding

Weldability

Used machine : Lorch V30 Welding methodology : GTA overlay welding Welding rod materials : NICHIA(日) CM-3R, CM-4MR Pre-heated to : 150°C, 300°C

Hardness along the surface after PWHT

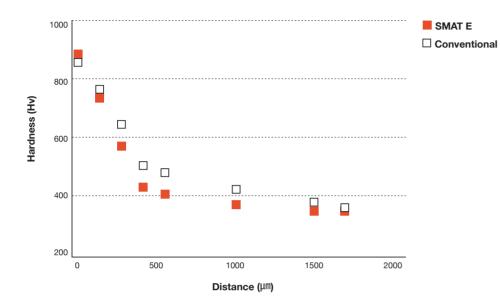

Lapping, photo-etching, EDM and machining after welding

machining after welding.

09

SMAT E has good arc-stability, the flow of molten pool, high wettability, and the shape of weld beads. And the hardness distributions after PWHT at 530~550°C are lowered to raw material's.

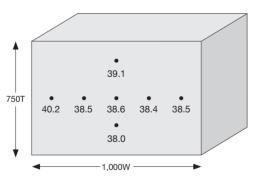
No defects such as weld lines or air bubbles were found when Lapping, photo-etching, EDM and


Tool fo

Nitriding

Hardness distributions

After nitriding at the same conditions, a hardness was measured from surface to center. The hardness of the nitrified surface was over Hv 850 and the nitrified depth was more than $200 \mu m$.


Methodology : Gas nitriding / Nitriding condition : 500°C×10Hr

Physical Properties

SMAT E shows almost uniform hardness distribution even in the large cross-section material 750Tx1,000W. The hardness is HRC 38~40.2, less than HRC 3 point between surface and core owing to advanced technologies in forge and heat treatments.

Hardness

Mechanical Properties

Hardness	Impact		roperties		
(HRC)	louunness	Yield strength (N/mm ²)	Tensile strength (N/mm ²)	Elongation (%)	Reduction of Area (%)
40	53	1,000~2,000	1,100~1,300	14	45

High-quality Mo

r Plastics

Plastic Injection d Steel

Overview

TP4MHH has higher hardness, HRC 35~38, than TP4M's. The level of hardness and mirror-finish is between TP4M and SMAT Series. As a result of alloy design and the technique of heat treatment, it has uniform hardness and microstructure in large sectional dimension. It can be used directly without any hear treatments. Because it is supplied as pre-hardened steel with QT heat treatment.

Steel grade for mold

60

50

40

20

10

iess (HRC)

Hardn

All-purpose

goods

iscellaneous

All-purpose

design

goods

TP4M

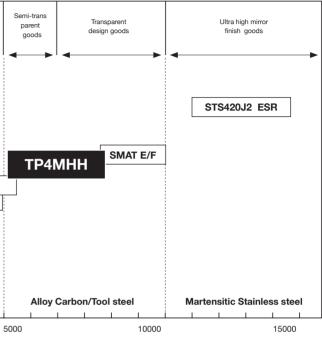
TP4

TP1

TP4MHH SeAH CSS's high-hardness steel for plastic injection molds Well-suited for producing high mirror-Excellent for Lower a production

Alloy Carbon steel
 Mold steel demanding hig Mold steel with hairline etc Automobile headlamps / ta Mold steels for injection provide the steels for injection provide

- High-quality mold steel such as automobile bumpers


Chemical Composition

Grade	с	Si	Mn	Ni	Cr	Мо	Special Elements
TP4M	0.28	0.25	0.85	0.50	1.70	0.40	Added
ТР4МНН	0.28	0.25	1.20	0.50	1.90	0.40	Added

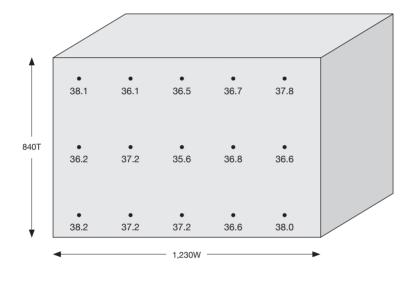
With an increased amount of hardenability elements, like Mn and Cr and special alloy elements, TP4MHH has uniform physical properties and microstructure even over 800T thickness.

12

Mirror-finish grade

- ng higher polishability than TP4M
- ine etching such as TV back covers
- ps / tail lamp molding
- tion products with sophisticated and elaborate designs

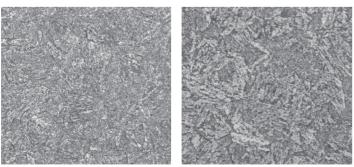
Mechanical P


Properties

ro	n	art	100
10	μ	71 L	163

Hardne	ess	Impact toughness (J/cm)	Tensile properties			
(HRC)	;)		Yield strength (N/mm²)	Tensile strength (N/mm ²)	Elongation (%)	Reduction of Area (%)
37.4		30	900~1,100	1,100~1,300	>12	>30

Hardness distribution

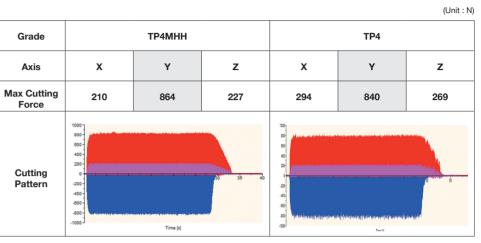

TP4MHH shows almost uniform hardness distribution even in the large cross-section material 840T×1,230W. The hardness is HRC 35.6-38.1, and the deviation from surface to core is less than HRC 3 due to forge and heat treatment technologies.

Microstructure

Microstructure of surface and core has uniform tempered martensite. However, heating and colling rate is slower in the center than in the surface so the tempered martensite lath is relatively coarse.

Surface

Core

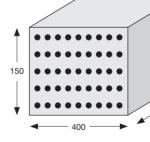

(Magnified by 200x)

Machinability

Cutting force (in end milling)

TP4MHH has similar cutting force to TP4, SCM-type mold steel. And it has stable cutting force graph due to uniform microstructure and mechanical properties.

Cutting condition : RPM 1,320 / Depth of cut : 2mm / Feed rate : 0.7m/min / Cutting direction : Y-axis Tool diameter : Φ15Φ / Tool material : WC (brand YG1)


that of TP4.

Gun drilling

When spindle speed and feed rates are high, initially the tool may fracture due to TP4MHH's enhanced hardness. The optimal operating condition is 1,440rpm, with a feed rate of 28mm/min and maximum holes machined are 28.

Drilling depth(53D) / Wet penetration work / Tool diameter : $\Phi 10\Phi$ Optimum drilling condition found / Specimen size : 400x150x530

Specimen (Unit : mm)

The results of operating conditions

Spindle Speed RPM	Feed Rate mm/min	No. of Holes	Distance machined mm
1,920	38	5	2,650
1,440	32	10	5,300
1,440	28	28	14,840

14

Despite of being harder HRC 5~8 point than TP4, maximum cutting force of Y direction of TP4MHH is similar to

Machinability

End milling

Tool wear was measured by using various materials and diameters after machining 3-pass under the following condition. TP4MHH shows good end mill machinability.

Specimen size : 70T×120W×190L / measured tool wear after 3-pass machining Wet condition / Tool Maker : OSG(HSS), TaeguTec(WC)

Tool		Operating Conditions			_
Material	Diameter (mm)	Spindle Speed (mm/min)	Feed Rate (mm/min)	Depth of Cut (mm)	Tool Wear (μm)
HSS	Φ 16	280	45	8	0.68
	Φ5	3,020	190	2.5	0.05
WC	Φ 16	1,090	110	8	0.13

Drilling

The table below shows how many holes were machined by tools with HSS/WC materials and several diameters until a tool breaks up. Drillability of TP4MHH with HSS was weaker but had equal or above level with WC materials.

Specimen size : 70T×120W×190L / Wet condition / Tool maker : YG1(HSS), TaeguTec(WC) Number of holes machined before tool fracture or The depth of tool wear measured

Tool		Machining Conditions			Tool wear(µm)	
Material	Diameter (mm)	Spindle Speed (mm/min)	Feed Rate (mm/min)	Drilling Depth (mm)	No. of Holes	
	Φ3	1,880	94	7D	Broken / 181	
HSS	Φ7	730	94.9	7D	Broken / 27	
	Φ3	6,000	780	6D	0.09 / 851	
wc	Φ 16	4,800	912	6D	0.05 / 322	

å

Korea	Head Office
	147 Jeokyeon-ro, Seongsan-gu,
	Changwon City, Gyeongsang
	South Province 51708 t.055-269-
	6114 f.055-269-6901
	Seoul Office
	Floor 29 of SeAH Tower 3, 45
	Yanghwa-ro, Seoul 04027 t.02-
	6970-2000 f.02-6970-2182
	Busan Sales Branch
	Floor 4 of SeAH Building, 267-
	gil, Hakgam-daero, Sasang-
	gu, Busan 46984 t.051-313-2259
	f.051-311-2105
Outside	China
Korea	RM 902, Aetna Tower, No.107
	Zunyi Rd., Shanghai, China t.86-
	21-5228-0781
	Japan
	706, Cent Urban Building, 3-23-
	15 Nishi-Nakajima, Yodogawa-
	ku, Osaka, Japan 532-0011 t.81-
	6-6838-8777 f.81-6-6838-8784
	Thailand

399 Interchange 21 Building 22nd floor, 12R Sukhumvit Road, Klongtoey-nua, Wattana, Bangkok, Thailand www.seahss.co.kr